新闻详情

高功率白光LED散热与寿命问题改善设计

日期:2021-08-22 09:21
浏览次数:7721
摘要:
北京红宝石hbs最新网站科技有限公司www.jon-kon.com(高功率白光LED散热与寿命问题改善设计)

在众多环保光源应用计划中,LED是相对其他光源计划更为节能、便于组装设计的一种光源技术,其中,在照明光源应用中,高功率白光LED使用则为*频繁的发光元器件,但白光LED虽在发光效率、单颗功率各方面表示均有研发进展,实际上白光LED仍保存发光均匀性、封装资料寿命等问题,尤其在芯片散热的应用限制,则为开发LED光源应用首要必须改善的问题...

    高功率白光LED应用于日常照明用途,其实在环保光源日益受到重视后,已经成为开发环保光源的首要选择。但实际上白光LED仍有许多技术上的瓶颈尚待克服,目前已有相关改善计划,用以强化白光LED在发光均匀性、封装资料寿命、散热强化等各方面设计瓶颈,进行重点功能与效能之改善。

    环保光源需求增加高功率白光LED应用出线

    LED光源受到青睐的主因,不过乎产品寿命长、光-电转换效率高、资料特性可在任意平面进行嵌装等特性。但在开展日常照明光源方面,由于需抵达实用的“照明”需求,原以指示用途的LED就无法直接对应照明应用,必须从芯片、封装、载板、制作技术与外部电路各方面进行强化,才干抵达照明用途所需的高功率、高亮度照明效用。

    就市场需求层面观察,针比照明应用市场开发的白光LED,可以说是未来用量较高的产品项目,但为抵达使用效用,白光LED必须针比照明应用进行重点功能改善。其一是针对LED芯片进行强化,例如,增加其光-电转换效率,或是加大芯片面积,让单个LED的发光量(光通量)抵达其设计极限。其二,属于较折衷的设计计划,若在继续加大单片LED芯片面积较困难的前提下,改用多片LED芯片封装在同一个光源模组,也是可以抵达接近前述办法的实用技术计划。

    以多芯片封装满足低本钱、高亮度设计要求

    就财产实务需求检视,碍于量产弹性、设计难度与控制产品良率/本钱问题,LED芯片继续加大会碰到本钱与良率的设计瓶颈。一昧的加大芯片面积可能会碰到的设计困难,并非技术上与生产技术办不到,而是在本钱与效益考量上,大面积之LED芯片本钱较高,并且关于实际制造需求的变卦设计弹性较低。

    反而是利用多片芯片的整合封装方法,让多片LED小芯片在载板上的等距排列,利用打线连接各芯片、搭配光学封装资料的整体封装,形成一光源模组产品,而多片封装可以在进行芯片测试后,利用二次加工整合成一个等效大芯片的光源模组,但却在制作弹性上较单片设计LED光源用元件要更具弹性。

    同时,多片之LED芯片模组解决计划,其生产本钱也可因为芯片本钱而大幅降低,等于在获得单片式设计计划同等光通量下,拥有本钱更低的开发选项。

    多芯片整合光源模组仍需考量本钱效益*大化

    另一个开展偏向,是将LED芯片面积继续增大,透过大面积获得高亮度、高光通量输出效果。但过大的LED芯片面积也会呈现不如设计预期之问题,常见的改进计划为修改复晶的结构,在芯片外表进行制作改善;但相关改善计划也容易影响芯片自身的散热效率,尤其在光源应用的LED模组,大多要求在高功率下驱动以获得更高的光通量,这会造成芯片进行发光过程中芯片接面所汇集的高热禁止易消散,影响模组产品的应用弹性与主/被动散热设计计划。

    一般设计计划中,据剖析采行7mm2的芯片尺寸,其发光效率为*佳,但7mm2大型芯片在良率与光表示控制较不易,本钱也相对较高;反而使用多片式芯片,如4片或8片小功率芯片,进行二次加工于载板搭配封装资料形成一LED光源模组,是较能快速开发所需亮度、功率表示之LED光源模组产品的设计计划。

    例如Philips、OSRAM、CREE等光源产品制造商,就推出整合4、8片或更多小型LED芯片封装之LED光源模组产品。但这类利用多片LED芯片架构的高亮度元件计划也引起了一些设计问题,例如:多颗LED芯片组合封装即必须搭配内置绝缘资料,用以避免各别LED芯片短路现象;这样的制程相关于单片式设计多了许多顺序,因此即使能较单片式计划节省本钱,也会因格外绝缘资料制程而缩小了两种计划的本钱差别。

    应用芯片外表制程改善也可强化LED光输出量

    除了增加芯片面积或数量是*直接的办法外,也有另一种针对芯片自身资料特性的发光效能改善。例如,可在LED蓝宝石基板上制作不平坦的外表结构,利用此一高低不规则之设计外表强化LED光输出量,即为在芯片外表建立Texture外表结晶架构。

    OSRAM即有利用此计划开发ThinGaN高亮度产品,于InGaN层先行形成金属膜材质、再进行剥离制程,使剥离后的外表可间接获得更高的光输出量!OSRAM号称此技术可以让相同的芯片获得75%光取出效率。

    另一方面,日本OMRON的开发思维就相当差别,一样是致力榨出芯片的光取出效率,OMRON即实验利用平面光源技术,搭配LENS光学系统为芯片光源进行反射、引导与控制,针对古板砲弹型封装结构的LED产品常见的光损失问题,进一步改善其设计结构,利用双层反射效果进而控制与强化LED的光取出量,但这种封装技术相对更为繁杂、本钱高,因此大多仅用于LCDTV背光模组设计。

    LED照明应用仍须改善元件光衰与寿命问题

    如果期待LED光源导入日常照明应用,其应用需克服的问题就会更多!因为日常照明光源会有长时间使用之情境,往往一开启就连续用上数个小时、甚至数十小时,那长时间开启的LED将会因为元件的高热造成芯片的发光衰减、寿命降低现象,元件必须针对热处理提出更好的计划,以便于减缓光衰问题过早爆发,影响产品使用体验。

    LED光源导入日常应用的另一大问题是,如古板使用的萤光灯具,使用超越数十小时均可维持相同的发光效率,但LED就差别了。因为LED发光芯片会因为元件高热而导致其发光效率递减,且此一问题不管在高功率或低功率LED皆然,只是低功率LED多仅用于指示性用途,对使用者来说影响相当小;但若LED作为光源使用,其光输出递减问题会在为提高亮度而加强单颗元件的驱动功率下越形加剧,一般会在使用过几小时后呈现亮度下滑,必须进行散热设计改善才干抵达光源应用需求。

    LED封装资料需因应高温、短波长光线进行改善

    在光源设计计划中,往往会利用增加驱动电流来换取LED芯片更高的光输出量,但这会让芯片外表在发光过程爆发的热度继续增高,而芯片的高温考验封装资料的耐用度,连续运行高温的状态下会致使原具备高热耐用度的封装资料呈现劣化,且资料劣化或质变也会进一步造成透光度下滑,因此在开发LED光源模组时,亦必须针对封装资料考量改用高抗热材质。

 

    增加LED光源模组元件散热办法相当多,可以从芯片、封装资料、模组之导热结构、PCB载板设计等进行重点改善。例如,芯片到封装资料之间,若红宝石hbs最新网站化散热传导速度,快速将核心热源透过封装资料外表逸散也是一种办法。或是由芯片与载板间的接触,直接将芯片核心高热透过资料的直接传导热源至载板逸散,进行LED芯片高热的重点改善。别的,PCB采行金属资料搭配与LED芯片紧贴组装设计,也可因为减少热传导的热阻,抵达快速散逸发光元件核心高热的设计目标。

    另在封装资料方面,以往LED元件大都采环氧树脂进行封装,其实环氧树脂自身的耐热性并不高,往往LED芯片还在使用寿命未结束前,环氧树脂就已经因为长时间高热运行而呈现劣化、变质的变色现象,这种状况在照明应用的LED模组设计中,会因为芯片高功率驱动而使封装资料劣化的速度加快,甚至影响元件的平安性。

    不可是高热问题,环氧树脂这类塑料材质,关于光的敏感度较高,尤其是短波长的光会让环氧树脂资料呈现破坏现象,而高功率的LED光源模组,其短波长光线会更多,对资料恶化速度也会有加剧现象。

    针对LED光源应用设计计划,大都业者大多倾向放弃环氧树脂封装资料,改用更耐高温、抗短波长光线的封装资料,例如矽树脂即具备较环氧树脂更高的抗热性,且在资料特性方面,矽树脂可抵达处于150~180°C环境下仍不会变色的资料优势。

    别的,矽树脂亦可疏散蓝色光与紫外线,矽树脂可以抑制封装资料因高热或短波长光线的资料劣化问题,减缓封装资料因为变质而导致透光率下滑问题。而就LED光源模组来说,矽树脂也有延长LED元件使用寿命优点,因为矽树脂自身抗高热与抗短波长光线优点,在封装资料可抵御LED长时间使用爆发的继续高热与光线照射,资料的寿命相对长许多,也可让LED元件有超越4万小时的使用寿命。

北京红宝石hbs最新网站科技有限公司www.jon-kon.com
(高功率白光LED散热与寿命问题改善设计)

 

京公网安备11010802026390号